Preliminary communication

MERCURY-BRIDGED, NITROSYL SUBSTITUTED, TRIRUTHENIUM CARBONYL CLUSTERS: SYNTHESIS AND X-RAY CRYSTAL STRUCTURE $\mathrm{OF}\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$

M. PILAR GÓMEZ-SAL, BRIAN F.G. JOHNSON, JACK LEWIS, PAUL R. RAITHBY and S.N. AZMAN B. SYED-MUSTAFFA

University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW (Great Britain)
(Received May 21st, 1984)

Summary

The neutral mixed-metal cluster $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$ has been prepared by the reaction of the $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]$, with HgCl_{2}. An X-ray crystal structure shows that the mercury atom links two Ru_{3} triangular units by bridging an $\mathrm{Ru}-\mathrm{Ru}$ edge of each unit. The dihedral angle between the two $\mathrm{Ru}_{2} \mathrm{Hg}$ triangles is 27.6°. In each Ru_{3} triangle a nitrosyl ligand bridges the same $\mathrm{Ru}-\mathrm{Ru}$ edge as the bridging Hg atom while the ten carbonyl groups are all terminal.

Transition metals of Groups Ib and IIb have been shown to link transition metal cluster carbonyl fragments, via metal-metal interactions, to give relatively "open" metal frameworks. In the anions [$\left.\left\{\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\right\}_{2} \mathrm{M}\right]^{-}$($\mathrm{M}=\mathrm{Ag}$ [1], Au [2]) the Group Ib element links two Os_{3} triangles by bonding to the two formally "unsaturated" Os-Os edges to give a planar $\mathrm{Os}_{2} \mathrm{MOs}_{2}$ central core. Mercury has been observed to link a variety of cluster units by a number of different modes of coordination, ranging from a Hg atom sitting between two Pt_{3} triangles, coordinating to all six of the Pt atoms [3], to a Hg_{2} unit which links two mononuclear Co complexes via a σ bond to each [4].

It is interesting to note that under the same reaction conditions as are employed to prepare the anion [$\left\{\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\right\}_{2} \mathrm{M}^{-}(\mathrm{M}=\mathrm{Ag}[1], \mathrm{Au}[2])$, treatment of $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{11}\right]^{-}$with mercury(I) and mercury(II) salts affords the raft complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11} \mathrm{Hg}\right]_{3}$ [5] and not the expected system with a mercury atom linking two Os_{3} triangular units. In order to investigate the generality of the reaction of mercury salts with trinuclear cluster anions we are carrying out a series of experiments, and in this communication we report the results of the reaction between HgCl_{2} and the "saturated" nitrosyl cluster anion $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]^{-}$.

Reaction of a methanolic solution of $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{~N}\right]\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]$ with HgCl_{2} ($2 / 1$ molar ratio) immediately gives a deep red precipitate, which has been characterised as $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$; The infrared spectrum of this complex ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution) shows carbonyl stretching frequencies at $2107 \mathrm{vw}, 2094 \mathrm{~m}$, 2061vs, 2033 m , and $2016 \mathrm{~m} \mathrm{~cm}^{-1}$, while a band at $1538 \mathrm{~m} \mathrm{~cm}^{-1}$ may be assigned to a nitrosyl stretching mode. The mass spectrum of the cluster shows a molecular ion at $m / e 1434$ (based on ${ }^{102} \mathrm{Ru}$) and a series of peaks at 200, 201, 202. and 204 which may be assigned as isotopic mercury fragments.

To confirm that the complex did consist of a mercury atom linking two Ru_{3} triangles in a manner analogous to that observed for the Group Ib elements with Os_{3} triangular systems $[1,2]$ a single crystal X-ray diffraction study* was undertaken. The structure of $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$ is illustrated in Fig. 1, which includes some important bond parameters**. The $\mathrm{Hg}(1)$ atom lies on a crystallographic two-fold axis and μ_{2}-bridges the $\operatorname{Ru}(1)-\operatorname{Ru}(2)$ and the symmetry related $\mathrm{Ru}\left(1^{\prime}\right)-\mathrm{Ru}\left(2^{\prime}\right)$ edges. In contrast to the $\left[\left\{\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\right\}_{2} \mathrm{M}\right]^{-}(\mathrm{M}=\mathrm{Ag}, \mathrm{Au})$

Fig. 1. The molecular structure of $\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}{ }_{2} \mathrm{Hg}$. Bond lengths: $\mathrm{Hg}(1)-\mathrm{Ru}(1)$, 2.868(1); $\mathrm{Hg}(1)-\mathrm{Ru}(2), 2.855(1) ; \mathrm{Ru}(1)-\mathrm{Ru}(2), 2.861(1) ; \mathrm{Ru}(1)-\mathrm{Ru}(3), 2.835(1) ; \mathrm{Ru}(2)-\mathrm{Ru}(3), 2.832(1)$; $\mathrm{Ru}(1)-\mathrm{N}(1), 1.992(4) ; \mathrm{Ru}(2)-\mathrm{N}(1), 1.998(4) ; \mathrm{N}(1)-\mathrm{O}(1), 1.209(6) \AA$. Bond angles: $\mathrm{Ru}(1)-\mathrm{Hg}(1)-\mathrm{Ru}(2)$, 60.0(1); Ru(1)-Hg(1)-Ru(1'), 122.5(1); Ru(2)-Hg(1)-Ru(2'), 121.3(1); $\mathrm{Hg}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2), 59.8(1)$; $\mathrm{Hg}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1), 60.2(1) ; \mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3), 59.6(1) ; \mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$, 59.7(1); $\operatorname{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2), 60.6(1) ; \mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{Ru}(2), 91.6(2)^{\circ}$.

[^0]anions, where the presence of a crystallographic centre of symmetry requires the central $\mathrm{Os}_{2} \mathrm{MOs}_{2}$ core to be planar [1,2], there is no such constraint in [$\left.\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$, and the dihedral angle between the two $\mathrm{Ru}_{2} \mathrm{Hg}$ triangles is 27.6°. However, the "trans" orientation of the two triangles observed in the OsAg [1] and OsAu [2] systems is retained, with $\operatorname{Ru}(3)$ and $\operatorname{Ru}\left(3^{\prime}\right)$ on opposite sides of the $\mathrm{Ru}_{2} \mathrm{HgRu}_{2}$ core. The dihedral angle between the $\mathrm{Ru}_{2} \mathrm{Hg}$ and the Ru_{3} planes is 123.3°, which is ca. 9° wider than the average dihedral angles between the $\mathrm{Os}_{2} \mathrm{M}$ and Os_{3} triangles in $\left[\left\{\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\right\}_{2} \mathrm{M}\right]^{-}\left(115^{\circ}\right.$ for $\mathrm{M}=\mathrm{Ag}[1]$ and 113° for $\mathrm{M}=\mathrm{Au}$ [2]). This difference may be at least partly attributed to the presence of the symmetrically μ_{2} bridging nitrosyl ligand, which occupies approximately the same position as the hydrides in the OsAg [1] and OsAu [2] anions. The $\mathrm{Ru}(1) \mathrm{Ru}(2) \mathrm{N}(1) \mathrm{O}(1)$ plane makes angles of 52.3° and 109.6° with the $\mathrm{Ru}(1) \mathrm{Ru}(2) \mathrm{Hg}(1)$ and $\mathrm{Ru}(1) \mathrm{Ru}(2) \mathrm{Ru}(3)$ planes, respectively. The ten carbonyl groups are essentially linear, and the $\mathrm{Ru}-\mathrm{C}$ (carbonyl) distances follow the expected trends for carbonyl ligands in competition with trans groups for back donation from filled metal orbitals. The longest $\mathrm{Ru}-\mathrm{C}$ bonds are associated with the carbonyl groups pseudo trans to the bridging nitrosyl and with the two axial CO groups on $\mathrm{Ru}(3)$. There is no significant difference in $\mathrm{Ru}-\mathrm{C}$ distances trans to $\mathrm{Os}-\mathrm{Os}$ or $\mathrm{Os}-\mathrm{Hg}$ vectors.

The $\mathrm{Hg}(1)$ atom in $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$ is considered to be in the $2+$ oxidation state, and so would be expected to adopt a linear, two coordinate geometry, as observed in a number of mercury(II) containing mixed-metal complexes [6]. In $\left[\left\{\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\right\}_{2} \mathrm{M}\right]^{-}(\mathrm{M}=\mathrm{Ag}[1], \mathrm{Au}[2])$ it has been suggested that the central M atom is in the $1+$ oxidation state and the lobes of the $s p$ hybridized orbital point at the mid-points of the bridged $\mathrm{Os}-\mathrm{Os}$ edges to form two, three-centre delocalised bonds. A similar bonding mode may be present in $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2}$ Hg . The $\mathrm{Ru}-\mathrm{Hg}$ distances show slight asymmetry and are marginally longer than the range of $\mathrm{Ru}-\mathrm{Hg}$ lengths (2.808(6)-2.840(6) \AA) for the Hg atom which links two Ru_{3} triangular units by bridging $\mathrm{Ru}-\mathrm{Ru}$ bonds, in $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mathrm{C}_{2}-\mathrm{t}-\mathrm{Bu}\right)\right]_{2} \mathrm{Hg}$ [7], in a manner similar to that in $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$.

The dihedral angle between the $\mathrm{Ru}_{2} \mathrm{Hg}$ and the Ru_{3} planes in [$\mathrm{Ru}_{3}(\mathrm{CO})_{9}-$ $\left.\left(\mathrm{C}_{2}-\mathrm{t}-\mathrm{Bu}\right)\right]_{2} \mathrm{Hg}$ [7] is 45° which is significantly larger than the twist found in $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$ but quite similar to the value of 42° for the angle between the $\mathrm{Ru}_{2} \mathrm{Au}$ and the Ru_{3} planes in the related nitrosyl anion [$\left\{\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right\}_{2^{-}}$ $\mathrm{Au}]^{-}$[8]. Although there is a variation in dihedral angles between these three complexes it is perhaps more important to note that unlike the $\left[\left\{\mathrm{Os}_{3} \mathrm{H}\right.\right.$ $\left.\left.(\mathrm{CO})_{10}\right\}_{2} \mathrm{M}\right]^{-}(\mathrm{M}=\mathrm{Ag}[1], \mathrm{Au}[2])$ anions the central core is not planar. The Ru_{3} units in these clusters are formally saturated 48 electron systems while the " $\left[\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\right]$ " units are unsaturated with only 46 electrons associated with them, and the difference in geometry may reflect the difference in electron count. A planar system may favour a greater delocalisation of the "unsaturation" over the metal framework, or a planar geometry could stabilise the "unsaturated" cluster by giving a symmetrically arranged shield of carbonyl groups around the central Ag or Au atom.

The $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ distance in $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$ is consistent with a saturated " $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{1_{1}}\right]^{-"}$ " unit and is ca. $0.026 \AA$ longer than the average $\mathrm{Ru}-\mathrm{Ru}$ distance of $2.834(2) \AA$ for the other two edges. By way of contrast the bridged $\mathrm{Os}-\mathrm{Os}$ edge in $\left[\left\{\mathrm{Os}_{3} \mathrm{H}(\mathrm{CO})_{10}\right\}_{2} \mathrm{Ag}\right]^{-}$[1] is ca. $0.15 \AA$ shorter than the
other two Os-Os edges and the unsaturation is thought to be localised in this fragment. The bridged $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ distance in $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$ is similar in length to the $\mathrm{Ru}-\mathrm{Ru}$ "single" bonds in $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ [9] where the average value is $2.854(1) \AA$. In the neutral nitrosyl cluster $\mathrm{Ru}_{3} \mathrm{H}(\mathrm{NO})(\mathrm{CO})_{7}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{3}$ [10] the bridged $\mathrm{Ru}-\mathrm{Ru}$ distance (2.816(2) \AA) is shorter than the two unbridged Ru-Ru edges (2.843(2) and 2.856(2) \AA), and this trend is a common feature in a variety of $\mathrm{M}_{3} \mathrm{H}(\mathrm{CO})_{10} \mathrm{X}$ clusters [11]. The answer as to why the reverse is true for the Ru_{3} triangles in [$\left.\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$ may hinge on steric rather than electronic arguments. The nitrosyl groups in $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$ and $\mathrm{Ru}_{3} \mathrm{H}(\mathrm{NO})(\mathrm{CO})_{7}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{3}$ each act as three electron donors while the Hg atom and the hydride may be considered to donate one electron, so that the electronic configuration in the " $\mathrm{Ru}_{2}(\mathrm{NO}) \mathrm{X}$ " ($\mathrm{X}=\mathrm{H}$ or Hg) fragments would be similar. The difference in the bridged $\mathrm{Ru}-\mathrm{Ru}$ distance may be attributed to the larger size of the Hg atom. Churchill has shown that the presence of a large bridgehead atom lengthens the bridged metal--metal distance [12].

The $\mathrm{Ru}-\mathrm{N}$ (nitrosyl) distances in $\left[\mathrm{Ru}_{3}(\mathrm{NO})(\mathrm{CO})_{10}\right]_{2} \mathrm{Hg}$ are similar to the average value of 1.98(1) \AA for the equivalent bonds in $\mathrm{Ru}_{3} \mathrm{H}(\mathrm{NO})(\mathrm{CO})_{7}$ $\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}_{3}[10]$. The $\mathrm{N}-\mathrm{O}$ distance is also similar to that in a number of nitrosyl bridged clusters [10,13].

We thank the S.E.R.C. for financial support and the Universidad Alcala de Henares (Spain) for study leave (for M.P.G.S.)

References

[^1]
[^0]: *Crystal data: $\mathrm{C}_{20} \mathrm{HgN}_{2} \mathrm{O}_{22} \mathrm{Ru}_{6}, M=1427.2$. Monoclinic, space group $C 2 / c, a 15.746(7), b$ 9.016(4), c $23.911(11) \AA, \beta 95.11(4)^{\circ}, U 3381.0 \AA^{3}, D_{\mathrm{c}} 2.79 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, F(000) 2616, \lambda\left(\mathrm{Mo}-K_{\alpha}\right) 0.71069 \AA$, $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=71.40 \mathrm{~cm}^{-1} .3312$ reflections measured on a Stoe four-circle diffractometer. Structure solved by a combination of direct methods and Fourier difference techniques, and refined by blocked cascade least squares to $R=0.028$ and $R_{w}=0.031$ for 2773 observed reflections [$F>4 \sigma(F)$].
 **The atomic coordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (Great Britain). Any request should be accompanied by a full literature citation for this communication.

[^1]: 1 M. Fajardo, M.P. Gómez-Sal, H.D. Holden, B.F.G. Johnson, J. Lewis, R.C.S. McQueen, and P.R. Raithby, J. Organomet. Chem., 267 (1984) C25.

 2 B.F.G. Johnson, D.A. Kaner, J. Lewis, and P.R. Raithby, J. Chem. Soc., Chem. Commun., (1981) 753.
 3 Y. Yamamoto, H. Yamazaki, and J. Sakurai, J. Am. Chem. Soc., 104 (1982) 2329.
 4 F. Cecconi, C.A. Ghilardi, S. Midallini, and S. Maneti, J. Chem. Soc., Dalton Trans., (1983) 349.
 5 M. Fajardo, H.D. Holden, B.F.G. Johnson, J. Lewis, and P.R. Raithby, J. Chem. Soc., Chem. Commun., (1984) 24.

 6 G.M. Sheldrick and R.N.F. Simpson, J. Chem. Soc. A, (1968) 1005; W. Clegg and P.J. Wheatley, J. Chem. Soc. A, (1971) 3572 ; R.F. Bryan and A.K. Manning. J. Chem. Soc., Dalton Trans., (1972) 2257.
 7 S. Ermex, K. King, K.I. Hardcastle, E. Rosenberg, A.M. Manotti Lanfredi, A. Tiripicchio, and M. Tiripicchio Camellini, Inorg. Chern., 22 (1983) 1339.

 8 M.P. Gómez-Sal, H.D. Holden, B.F.G. Johnson, J. Lewis, P.R. Raithby, and S.N.A.B. Syed-Mustaffa, in preparation.
 9 M.R. Churchill, F.J. Hollander, and J.P. Hutchinson, Inorg. Chem., 16 (1977) 2655.
 10 B.F.G. Johnson, P.R. Raithby, and C. Zuccaro, J. Chem. Soc., Dalton Trans., (1980) 99.
 11 M.R. Churchill and R.A. Lashewycz, Inorg. Chem., 18 (1979) 1926.
 12 M.R. Churchill and R.A. Lashewycz, Inorg. Chem., 18 (1979) 3261.
 13 J. Norton, J. Collman, G. Dolcetti, and W.J. Robinson, Inorg. Chem., 11 (1972) 382.

